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1. INTRODUCTION

The response of a braided-shield cable to external electromagnetic excita-
tion in the presence of a third parallel conductor (e.g., the earth) can be
obtained by considering a set of two coupled transmission lines. The external
line is formed by the third conductor and the outer surface of the cable
shield, and the internal line is Just the coaxial cable itself. Theoretical
analyses of this problem are found elsewhere in the literature. -5 Coupling
to the internal line (i.e., penetration of the magnetic and electric fields)
results from both the finite conductivity of the shield and the presence of
apertures in the weaving of the braided wire.

The electric and magnetic fields associated with the external transmission
line are relatively unperturbed by the imperfections of a typical caole
shield. That is, the reaction of the internal line on the external region is
negligible. Because of the weak coupling between the two transmission lines,
a good approximate solution for the response of the internal line can be
obtained in a two-step process using simple two-conductor transmission-line
equations. The first step is to determine the tangential magnetic and normal
electric fields at the outer surface of the cable shield for the particular
external excitation, assuming the shield to be a solid cylindrical conductor.
Then, assuming that the coupling parameters between these surface fields and
the interior are known, one can compute the currents a'd voltages along the
internal transmission line.

Measurements which directly determine the magnitude of the electric field
coupling have apparently not been published, even though theoretical analyses
suggest that the electric and magnetic coupling effects are comparable for
many cables. 1 ' 5 The published results are measurements of the magnetic field
coupling a 1one or a mixture of the electric and magnetic field coupling ef-
fects. FrankelJ has reviewed and commented on a number of results published
before 1971 and points out that the effects of these two types of coupling
depend not only on the relative magnitudes of the coupling parameters but also
on the length of the cable, the terminations of both the internal and external
transmission lines, and the orientation and polarization of the externally
impressed fields. A more recent approach by Martin and Emert 6 uses a curve-
fitting routine to estimate both the electric and magnetic field coupling
parameters.

1E. F. Vance, Comparison of Electric and Magnetic Coupling Throtigh Braided Wire Shields,
Stanford Research Institute, Technical Report No. AFWL-TR-73-7 (1973).2E. V. Vance and H. Chang, Shielding Effectiveness of Braided Wire Shields, Air Force Weapons
Laboratory, Technical Memorandum No. 16, AFWL Contract F29601-69-C-0127 (November 1971).3 K. S. H. Lee and C. E. Baum, Application of Modal Analysis to Braided-Shield Cables, IEEE
Trans. Electromagn. Compat., EMC-17, No. 3 (August 1975).

4S. Frankel, Terminal Response of Braided-Shield Cables to External Monochromatic
Electromagnetic Fields, IEEE Trans. Electromagn. Compat., EMC-16, No. I (February 1974).

5E. F. Vance, Coupling to Shielded Cables, Wiley-lnterscience, New York (1978), pp 148-149.
6A. R. Martin and S. E. Emert, The Shielding Effectiveness of Long Cables, II: LT and GTR,

IEEE Trans. Electromagn. Compat., EMC-22, No. 4 (November 1980).
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For a cable shield having a high degree of optical coverage (e.g., a
double shield) the relative effects due to electric field coupling should be
small. Merewether and Ezell 7 investigated the response of an RG-214 coaxial
cable. They measured the magnetic field coupling and determined an upper
bound for the electric field coupling parameter. Their results show that for
an RG-214 cable the electric field coupling is relatively insignificant.

In this paper we present experimental results which determine the magni-
tudes of both the electric and magnetic coupling coefficients for an RG-8
coaxial cable. This particular caole was chosen because of the relatively
large apertures in the braided shield.

2. GENERAL CONSIDERATIONS

The transfer of electromagnetic energy to the interior of a shielded cable
occurs both by diffusion and by penetration through apertures in the braided
structure. The diffusion is proportional to the magnetic field only, because
of the relatively high conductivity of the metal. Both the magnetic and elec-
tric fields couple through the apertures, however, and theory predicts the
resulting effects to be comparable. 1 ' 5

The problem of fields coupling through apertures is discussed by Vance and
Chang. 2 They show that the magnetic field penetration to the cable interior
can be expressed as a series inductive coupling proportional to the frequency

and to the tangential magnetic field at the outer surface of the shield.
Likewise, the penetration of the electric field can be expressed as a shunt
capacitive coupling proportional to the frequency and to the normal electric

field at the outer surface of the shield. The tangential magnetic field at
the surface is proportional to the shield current, and the normal electric
field at the surface is proportional to the proauct of the capacitance per
unit length and the transverse voltage of the external transmission line.
Hence, for any given frequency, Lhe coupling can be represented as equivalent
series and shunt sources, proportional ,espectively to the current and trans-
verse voltage (assuming uniform capacitance) of the external transmission
line. Since the cables are of uniform construotion with aperture spacing
small compared to the wavelengths of interest, the sources can be treated as
being continuously distributed along the length cf the cable.

In this discussion we assume that the fields are symmetric about the cable
axis. For the laboratory arrangpmi.nt used here this is true since the inter-

1E. F. Vance, Comparison of Electric and Magnetic Coupling Through Braided Wire Shields,
Stanford Researdi Institute, Technical Report No. AFWL--TR-73-7 (1973).

2E. V. Vance and H. Chang, Shielding Effectiveness of Braided Wire Shields, Air Force Weapons

Laboratory, Technical Memorandum No. 16, AFWL Contract F29601-69-C-0127 (November 1971).
5 E. F. Vance, Coupling to Shielded Cables, Wlle-Interscience. New York (1978), pp 148-149.
7D. E. Merewether and T. F. Ezell, The Effect uf 4utual Indu'tance and Mutual Capacitance of

the Transient Response of Braided-Shield Coaxial Cables, IEEE Trans. Electromagn. Compat., EMC-
18, No. I (February 1976).

1 
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nal and external lines are coaxial. In most practical situations this is not
true, but one can consider average values about the outer periphery of the
shield.4

3. SOURCE COUPLING PARAMETERS

The per-unit-length coupling parameters referred to as the transfer impe-
dance, ZT, for the series source, and transfer admittance, YT. for the shunt
source, are expressed ass

Zr = Md + wM1 2  ()

and

YT = J .:12 (2)

The first term of the transfer impedance relation is the diffusion parameter
and can be expressed as

M R0 (I j)T/6
d sinh[(1 + j)T/6] I

where R0 is the dc resistance per unit length of the shield, T is the effec-
tive thickness of the shield, 6 = (2/,wpo)1/2 is the skin depth in the shield,
w is the angular frequency, and o and )j are respectively the electrical con-
ductivity and the magnetic permeability of the shield material. The constants
M12 and C12, the magnetic and electric field coupling coefficients for aper-
tures, are determined experimentally, although approximate expressiLns have
been derived theoretically.'Is The diffusion term decreases rapidly with
frequency, and hence the high-frequency coupling is dominated by aperture
effects and increases linearly with frequency.

Lee and Baum3 show that in general ZT and YT appear not only in the source
terms but are also combined with the distributed transmission-line coeffi-
cients. For most coaxial cables, however, M1 2 and C12 are small compared to
the corresponding inductance and capacitance of the cable and need appear only
in the source terms of the differential equations which describe the coupling.

4. INTERNAL RESPONSE

In this section we determine the currents flowing in the center conductor
of a coaxial cable resulting from the penetration of external electromagnetic

1E. F. Vance, Comparison of Electric and Magnetic Coupling Through Braided Wire Shields,
Stanford Research Institute, Technical Report No. AFWL-TR-73-7 (1973).3 K. S. H. Lee and C. E. Baum, Application of Modal Analysis to Braided-Shield Cables, IEEE
Trans. Electromagn. Compat., EMC-17, No. 3 (August 1975).

4S. Frankel, Terminal Respcnse of Braided-Shield Cables to External Monochromatic
Electromagnetic Fields, IEEE Trans. Electromagn. Compat., EMC-16, No. I (February 1974).5E. F. Vance, Coupling to Shielded Cables, hiley-Interscience, New York (1978), pp 148-149.
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fields through the cable shield. The shield is driven at one end with respect
to a third conductor to which the shield is characteristically terminated at
the opposite end. Then, for an electrically short cable we investigate the
interior terminal currents for different terminating impedances and show that
one can selectively measure the currents induced by the magnetic or electric
fields. We then terminate the external line in ways which substantially
reduce either the external magnetic or electric fields.

Consider a shielded coaxial cable of length x with exterior current and

voltage given by Is(w,&) = Io(w)e-YO& and Vo(w,E) = ZoeIs(w,E), where ZOe is

the characteristic impedance of the external line, E is the distance from the
driven end, and YO = jw/c. We can obtain the center conductor current at the
coordinate y by integrating the magnetic and electric field sources with the
corresponding point-source response functions. Thus, the magnetic and elec-
tric currents in the center conductor are

I(wy) = k e-Y0E Hm(w,y,t) dE (4)
ImmY) =T()o~) /0

and

I = -Y(w)ZeIOM) e- He(w,y,&) dE (5)e( =oe fO e

The functions Hrm(w,y,E) and He(w,y,E) are the currents at y due respectively
to a series voltage so,2rca and shunt current source at E, both of unit ampli-
tude with harmonic time dependence eJ't. The time-dependent term is sup-
pressed in this discussion.

A derivation of the point-source response function is given by Schelkun-
offe (chapter 7). The results, expressed differently, are

Hm = 1 [e-_lI- + R e- 2YZeY(y+&) + Re-Y(y+0) + R R e-R2YeYIY-E]

0 2 1~ 12
(6)

and

1 r-YIY-I + R e- 2 YZeY(Y+) ReY(y+&) YYy-El1
He = T(IT L±e 2 -P RIR 2 ee2Yje

7'ý

8 S. A. Schelkunoff, Electromagnetic Waves, 0. Van Nostrand Co., New York (1943).
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where the upper signs in equation (7) correspond t- y > ý and the lower signs
to y < ý. Z0 is the characteristic impedance of the internal line,

z0 - z z0 - z2 _
RI = 1 R2 = 2 f-

SZ0 1 ZI Z0 + Z2

and D(M) = 1 - R1 R2e
2 Y, where a and v are respectively the attenuation con-

stant and the propagation velocity associated with the internal line. The
impedances Z, and Z2 terminate the internal line at y = 0 (the driven end) and
y = Z, respectively.

With rI = Y - Y0 , r2 = Y + YO'

PNY) = y erlF d ,
0

and

Q(y) J e-2 dt
y

equations (4) and (5) become

Z I M)I y() Re (2YL(y() + RQ(0

Im(Y'W) T (0 e Q(y) + 2 D()
0

(8)

+ eyy(P(Y) + R(N() i

and

eYTM O M R 2y~Q e0Y(i() R1Q
Ie(yw) = T( e YYQ(Y + e ()_(- R Q(O)

(9)

-yy( RI(N(L) - R2e -RP())9
+ e P(Y) - D() "

We now examine the terminal responses for three different termination
configurations.

9



Case I. Both ends of internal line terminated
characteristically: ZI = 2 = ZO.

From equations (8) and (9) at y = 0, we find that

m (0) = ZT IOW [I - er2] (10)m 2Z~r2

and

e (0) YT(w)ZUeIO(w) [ e[ (11)e 2r2e (1

and at y =

IZT(W)Io(W) [e-YOZ e-YE 12

Im(i) = 2ZoeIe(12)

"and

-YT(W)ZOeIO(W) e-r 0 -Yi

e = 2I - e ] . (13)

If only first-order terms for an electrically short line are retained, the
bracketed terms in equations (10) to (13) become £. Then

(0)) = 1r(0 + Ie(0) = Z 0 Ml)+ ( T(W)zZ0 (14)
= m e 2Z0  £ (W)

and

I(M) = I() + Ie (£) = TZ 0 Zr T(w) •Oez 0 (15)me2Z 0 I Z T(W)I

By measuring the current at both ends (or equivalently measuring at one end
and driving at both ends), one obtains from (14) and (15)

7  
= 1(0) + I(M) 16)7T = 0 I0£

and

1(0) - I(M) (17)YT Z ZoIo£

T zOe 101

At high frequencies where aperture coupling dominates, only the magnitudes of
1(0) and I(M) are required to obtain M12 and C12.

10



Case II. Driven end of internal line characteristically terminated,
far end shorted: ZI = Z0, Z2 = 0.

Equations (8) and (9) now yield at y = 0
ZTIo(w)

I (0) =T 2Y1.(n) 02Z [Q(O) + e- P(1)] (18)

and

I e() = -YTZOeIo(w)[-Q(O) + e-2 YiP(l)] . (19)

Retaining only first-order terms, we obtain

ZTIo(w)i

I (0) = T (20)
m Z0

and

Ie(O) = 0

Case III. Driven end characteristically terminated,
far end open: ZI ZO, Z2 =

Again, from equations (8) and (9), at y 0 we get

I T 0 [Q(O) - e 2 ' P(l)] - 0
m 20

and

-e TO 10 (W) [-Q(O) - e )]

(21)

YTZOeIO (W)2,

Thus, for an electrically short line, current contributions induced by the
electric and magnetic fields can be selectively excluded by respectively short
circuiting and open circuiting the far-end termination.

In addition, he external electric or magnetic field can be substantially
reduced for the e.ectrically short line by changing the external drive cir-
cuit. If the external line is terminated in Z = 0, then, for a sufficiently
short line, the normal electric field will be negligible. On the other hand,
if ZZ = -, then it is possible to establish a normal electrio field with
negligible magnetic field.

11



It would be prudent in attempting to measure the coupling parameters to
adjust both the internal and external circuit for optimum conditions. When an
electrically short line is used, ZT would be measured with Z= Z2 = 0 and
ZI = ZO. Likewise, to measure YT the terminations would be ZI= Z and Z=
Z2 = 0. Then from equations (20) and (21),

ZOIm (w)

ZT (W) = O)m (22)
T I (W)i

and
I (w)

YT(W) = e (23)

where IS(M) is the external shield current and VO(W) the transverse voltage
for the two external line configurations.

The transfer impedance and transfer admittance re usually defined 5 in
terms of the internal open-circuit voltage and short-circuit current, respec-
tively. However, for a typical cable, both ZT and YT are quite small and,
hence, to a very good approximation ZOIm and Ie in equations (22) and (23) are
respectively equal to the open-circuit voltage and short-circuit current.

5. LABORATORY MEASUREMENTS

A 20-cm-long sample of RG-8 coaxial cable shield was positioned coaxially
inside a 50-cm-long cylindrical aluminum tube having a 10-cm inside diameter.
The additional length of the external circuit, which included copper-tube
extensions from the braided shield, was intended to minimize end effects in
the sample region. We constructed the test sample by soldering a copper tube
around all but 20 cm of a 48-cm length of cable, the internal line. A short-
ing screw, accessible through the tubular extension opposite the measurement
end, was used to open circuit and short circuit the internal line and thus
exclude the magnetic and electric contributions, respectively, to the internal
currents. The insulating jacket remained around the braided shield in order
to maintain the natural contact resistance of the braided weave.

Figure 1 shows the experimental configurations. The external circuits
were Iriven with a capacitive discharge pulser fired through a self-breaking
spark gap. The resulting shield current Is in figure 1(a) and the reristor
current Ir in figure 1(b) had rise times of approximately 15 ns, e-fold decay
times of 3 ps, and peak amplitudes of approximately 80 A. Both I. and Ir were
measured using a Singer 91550-3 current probe. A Tektronix CT-i probe was
used for the internal measurements. The spectral content of the external and
internal current pulses was recorded on Polaroid film using an HP 141T spec-
trun analyzer and camera located inside the shielded enclosure. The pulser
operated at approximately one pulse per second as th4 analyzer slowly swept
through the range of frequency, sampling each pulse.

5E. F. Vance, Coupling to Shielded Cables, Wlley-Intersclence, New York (1978), pp 148-149.
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The experimental results for the magnitudes of ZT and YT using equations
(22) and (23) are shewn as dots in figure 2. The straight line through the YT
data has a slope of 1 and yields an electric field coupling constant C12
Y T/w of 2.25 x 10-1' F/m. As shown below, the departure from the straight
line at higher frequencies can be attributed to the presence of unwanted
magnetic field contributions to the internal currents.

The line through the high-frequency region of the Z data has a slope of
0.9, deviating from the theoretical value of 1. The Tow-frequency ZT data
correspond to a dc resistance of 7.9 x 10-' 9/m. The measured resistance of a
10-m length of identical cable using a precision milliohm meter was 74 in.

(a) (b)
-4 8S €= -. •I 4

so CM ,50 • C

-20 Cm-- -\

Fgure 1. Experimental configuration for measuring (~a) transfer impedance and

()transfer admittance.

Z,1, ,

°'-' 

--27 ; 4-

isZ

I i+-I +-

Figure 2. Transfer impedance and transfer admittance of an RG-8 coaxial cable.
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Measurements were made to investi- 10 __,_,_,_,, ____,__

gate the presence of both electric and Iscmagnetic field coupling to the internal EXTERNAL

circuit with the external circuit con- E C.,

figured to produce either the electric 1 E-IELDCONF. ,
or magnetic field. For the external -"
circuiL configuration in figure 1(a),
the ratio Ioc/Lsc of the internal cur-
rents through the 50-R termination was .1 '1

recorded for the shorting screw open EXTERNAL
circuited and short circuited. Like- H-" EX LDECONFA
wise, for the external configuration of

figure 1(b), the ratio Isc/IoC was .01 , , I_,___,____.___
recorded. These data, shown in figure 3 10 30 100
3, demonstrate the significance of the FRE•UENCY(MHz)
internal circuit configuration for
measuring the coupling parameters. For Figure 3. Ratios of coupling
examplc, at 30 MHz the error in Y through shield: (upper curve) mag-
using the configuration in figure 1(bT netic to electric field, external
is almost negligible. However, from circuit configured tc produce elec-
figure 3 it is clear that a very tric field; (lower curve) electric
significant error would result if the to magnetic field, external circuit
internal circuit were termonated in configured to produce magnetic
50 9 at both ends. field.

The electric field coupling measurements could be improved at higher fre-
quencies if the internal load resistance ZI were increased. Thus, the
magnetic field centributions would be reduced, whereas the electric field
contributions would be unchanged so long as ZI << I/YTI. Simuilarly, the
smallest value of Z, such that ZI >> ZTk would yield the best results when
electric field coupling contributes to the internal currents. The load re-
sistance ZI must also be significantly larger than the insertion impedance of
the probe used to measure the internal current. A Tektronix CT-I probe for
example has an insertion impedance of approximately 1 9.

6. DISCUSSION

A problem encountered in describing the electric field coupling in terms
of a transfer admittance is that the proportionality between the normal elec-
tric field and the transverse voltage of the external circuit includes the
capacitance of the external circuit. Hence, a transfer admittance measurement
in the l1. ratory is dependent on the geometry and dielectric material of the
experimer 0 configuration. For this reason it is convenient to define a
transfer ratio as the measured transfer admittance divided by the capacitance
per unit length Cd of the external drive circuit used in the measurement. The
transfer ratio is then multiplied by the corresponding capacitance for any
configuration in which the admittance is used to compute the electric field
coupling. A similar problem does not exist with the transfer impedance, since
the proportionality betweer the tangential magnetic field and the shield
current depends only on the shiela diameter.

14



When the external transverse voltage and shield current are related by
VO Zoeis, the ratio of the magnetic to electric field coupling to the
internal line is given by

R Zr (214)
m,e YTZOZo

In our laboratory experiments Zoe = 138 a and Z = 50 a. Then from the meas-
ured data at 5 and 10 MHz we obtain Rm e = 5.9 and 5.3, respectively. The
same ratio would be observed for other drive geometries which have the same
dielectric medium, air in this case. For example, we iould have used the
transfer ratio YT/Cd and multiplied by the capacitance of the drive circuits.
Then

ZT __(__)-_ /

(YT/Cd)CdZOeZO [YT/Cd)Zo

wnere p and c are respectively the magnetic permeability and dielectric
permittivity of the external drive circuit.

Equation (24) has been computed by Vances for air dielectric inside and
outside the shield as a function of the braid weave-angle. For a weave-angle
of 30 degrees corresponding to an RG-8 shield, the colputea ratio is approx-
imately 1.5. In order to compare our measured rcsults with the computed
ratio, a correction is required to account for tne dielectric insulation of
the RG-8 cable. The correction pertains -:rlIy to the electric field coupling
term, YT* If the effect of the thin protective outer jacket is negligible,
then the correction factor9 to be applied to the computed value is

2r = 1.4
1+c

r

where cr = 2.4 is the relative dielectric constant of the polyethylene insula-
tion. Tnus the computed ratio for an RG-8 cable becomes 1.5/1.4 1 1 as com-
pared to the measured values of between 5 and 6.

The discrepancy between the measured and computed ratios may result from
an overly simplified model of a braided-shield cable used in the calculations.
The model does not account for the finite thickness of the shield or the
interwoven structure and associated contact resistances. Madel 1 0 explains
another magnetic field coupling mechanism, termed "porpoising," which results

5 E. F. Vance, Coupling to Shielded Cables, Wiley-Intersclence, New York (1978), pp 148-149.

9. Marin, Effects of a Dielectric Jacket of a Braided-Shield Cable on EMP Coupling

Calculations, Interaction Notes, Note 178, Air Force Weapons Laboratory. Klrtland Air Force Base,

NM (May 1974).
lOp. j. Madel, Contact Resistance and Porpolsing Effects in Braid Shielded Cables, IEEE

Intern&tlonal Symposium on Electromagnetic Compatibility (1980), pp 206-210.
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from the braided weave pattern and adds to the transfer impedance. The
porpoising mechanism can be dominant in some shields. Moreover, the thin-wall
approximation tends to exaggerate the electric field coupling. For a shield
of finite thickness, some of the field lines would bend and terminate on the
shield rather than on the center conductor, thus reducing the effective area
of the aperture.

From figure 3 it is clear that for our 0.5-m external line it would not be
possible to accurately measure the electric field coupling above several mega-
hertz without open circuiting the internal line as shown in figure 1(b). An
earlier version of this experiment," 1 using a 20-cm sample length without the
cylindrical extensions shown in figure 1, yielded essentially the same re-
sults. Therefore, the lengths of both the external and internal lines could
have h~on smaller in the experiments reported here. In the earlier measure-
ments using the shorter line, the departure from the straight line in the YT
data at 40 and 50 MHz was not observed.

7. CONCLUSIONS

Our experimental results show that for a braided-shield cable, the elec-
tric field contribution to the internal cable responses is relatively unimpor-
tant at low frequencies where the diffusion component of the magnetic field
coupling is dominant. At higher frequencies, however, the electric field
coupling can be significant and, aepending on the configuration and external
excitation of the cable, should be included in estimating interference ef-
fects. Our measurements indicate that, for the RG--8 coaxial cable evaluated,
the electric field coupling is less important relative to the magnetic field
coupling than had been expected.

11S. B. MacDonald, Electric and Magnetic Coupling Measurements of Braided-Shield Cables, 23rd

Annual Student Technical Symposium, Harry Diamond Laboratories (September 1982), pp 149-157.
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